Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 1 of 57

EXHIBIT N

317

05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 2 of 57

Case 2

318

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 3 of 57

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 4 of 57

0§ DIGITAL RESERRCH

Paost Office Box 679, Pacific Grove, Galifornia 93950, (408) 649-3896

CP/M 2.0 INTERFACE GUIDE

Copyright (c) 1979
DIGITAL RESEARCH

320

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 5 of 57

Copyright

Copyright (¢) 1979 by Digital Rescarch. Al rights reserved. No part of
this publication may be reproduced, ttansmitted, transcribed, stored in
a retrieval system, or translated into amy language or computer
language, in any form or by any means, electronic, mechanical,

‘magnetic, optical, chemical, manual or otherwise, without the prior
writtenr permission of Dlgltal Research, Post Office Box 579, Pacific
Grove, California 93950.

d

‘Disclaimer

Digital Research makes no representations or warranties with respect to
the contenlts hereof dnd specifically disglaims any implied warranties of
merchantability or fitriess for dny particular purpose. Further, Digital
Rescarch réserves fhe right to revise this' publication and to make
changes from time to-time in thé content hereof without obligation of
Digital Research to notify any person of such revision o ¢hanges.

321

322

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 6 of 57

Introduction .

CP/M 2.8 INTERFACE GUIDE

Copyright - (c} 1979
Digital Research, Box 579

Pacific Grove, Califernia

Operating System Call Conventions ., . . .
A Sample File-to-File Copy Program

A Sample File Dump Utility

& Sample Random Access Program

Systen Function.Summary c v e v e v e W

29
34

.37

46

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 7 of 57

323

324

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 8 of 57

1. ZINTRODUCTION,

This manual describes CP/M, release 2, system organization
including the structure of memory and system entry points. The
intention is to provide the necessary information reguired to write
programs which operate under CP/M, and which use the peripheral and
disk I/0Q facilities of the system,

CP/M is logically divided into four parts, called the Basic I/0
system ({BIOS), the Basic Disk Operating System (BDOS), the Console
command processot (CCP), and the Transient Program Area (TPA), The

‘BIOS is a hardware-dependent module which defines the exact low level

interface to a particular computer system which is necessary for
peripheral device I/0. Althoigh & standard BIOS is supplied by

Digital Research, explicit instructions are provided for field

reconfiguration of the BIOS to match nearly any hardware environment
{see the Digital Research manual entitled "CP/M Alteration Guide"}.

‘The BIOS and BDOS are logically combined into a single module with a

common entry point, and referred to as the FDOS. The CCP is a
distinct program which uses the FDOS to provide a human-oriented
interface to the informatioh which is cataloged on the backup storage
device, The TPA is an area of memory (i.e., the portion which is not
ysed by the FDOS and CCP) whetre various non-resident operating system
commands and user programs are eXecuted, The lower portion of memory
is reserved for system information and is detailed later sections,
Memory organization of the CP/M system in shown below:

high | |

memory | . I
| FDOS (BDOS+BIOS) i

FBASE: | |
| |

| cCP |

CBASE: | |
] ‘ |

{ |

] |

| TPA |

| |

TBASE: | |
] system parameters]

BOOT: | - |

C——— - - — ey 1oy e et Pt B P o e et et G

The exact memory addresses corresponding to BOOT, TBASE, CBASE, and
FBASE vary from version to version, and are described fully in the
"CP/M Alteration Guide,” All standard CP/M versions, however, .assume
BOOT = 890PH, which is the base of random access memory, Thé machine
code found at location BOOT performs a system "warm start® which loads
and initializes the programs and variables necessary to return control
to the CCP. Thus, transient programs need only jump to location BQOT

{All Information Contained Herein is Proprietary to Digital Research.)

1

325

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 9 of 57

to return control to CP/M at the command level. Further, the standard
versions assume 'TBASE = BOOT+0180H which is normally location B1@8H.
The principal entry point. to the FDOS is at location BOOT+BBGSH
(normally B865H) where a jump to FBASE is found., The address fleld at
BOOT+P0O6H (normally .88@6H) contains the value of FBASE and can be
used to determine the size of available memory, assuming the CCP is
being overlayed by a transient program.

Transient programs are loaded into the TPA and executed as
follows, The operator communicates with the CCP by typing command
lines following each prompt, Each command line takes one of the
formss:

command
command filel
command filel file2

where “command” is either a buoilt-in function such as DIR or TYPE, or
the name of a transient command. or prodram., If the command is a
built-in function of CP/M, it is executed immediately. Otherwise, the
GCP searches the currently addressed disk for a file by the name

command,COM

If the file is found, it is assunied to be a memory 1mage of a program
which executes in the TPA, and thus implicitly originates at TBASE in

wemory., The CCP loads the COM file from the disk into memory starting

at TBASE and possibly extending up to CBASE.

If the command is followed by one or two file specifications,
thé CCP prepares one or two file control block (FCB). names in the
system parameter area, These optional PCB's are in the form hetessary
to access files through the FDOS, and are described in the next
section.

The transient program receives control from the CCP and beginsg
execution, perhaps using the I/0 facilities of the FDOS. Thé
transient program is “called" from the CCP, and thus can simply return
to the CCP upon completion of its processing, or can jump to BOOT to
pass control back to CP/M. 1In the firfst case, the transient ptogram
must not use memory above CBASE, while in the latter case, memory up
through FBASE-l is free,

The transient program may use the CP/M I/0 facilities to
communicate with the operator's consple and peripheral devices,
including the disk subsystém. The I/O0 system is accessed by passing a
"function number" and an "information address® to CP/M through ¢the
FDOS entry point at BOOT+B@45H, In the caseé of a disk read, for
example, the transient program sends the number correspanding to a
disk read, along with the address of an FCB to the CP/M FDOS5. The
FDOS, in turn, performs the operation and returns with either a disk
read completion indication or an error number indicating that the disk
read was unsuccessful., The function numbers and error indicators are
given in below,

(All Information Contained Herein is Proprietary to Digital Research.)

2

J

326

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 10 of 57

2. OPERATING SYSTEM CALL CONVENTIONS,

The purpose of this section is to provide detailed information
for performing direct operating system calls from user programs., Many
of the functions listed below, however, are more simply accessed
through the I/0 macro library provided with the MAC macro assembler,
and listed in the Digital Research manual entitled "MAC Macro
Assembler; Language Manual and Applications Guide,"

CP/M facilities which are available for access by transient
programs fall into two general categories: simple device I/0, and

‘disk file /0, The simple device operations include:

Read a Console Character

Write a Console Character

Read a Seqiiential Tape Character
Write a Segqguential Tape Character
Write a List Device Character
Get or Set L/0 Statusg

Print Cornsole Buffer

Read Console Buffer

Interrogate Conscle Ready

The FDOS operations which perform disk Input/Output are

Disk System Reset

Drive Selection

File Creation

File Open

File Close

Directory Search

File Delete

File Rename

Random or Seguential Read
Random or Seguential Write
Interrogate Available Disks
Interrogate Selected Disk
Set DMA Addréss

Set/Reset File Indicators

. As mentioned above, access to the FDOS functions is accomplished
by passing a function number and information address through the
primary entry point at location BOOT+8885H., In general, the function
number is passed in register C with the information address 1in the
double byte pair DE. Single byte values are returned in register A,
with double byte values returned in HL (a zero value is returned when
the function number is out of range). For reasons of compatibility,
register A = L and register B = H upen return in all cases., Note that
the register passing conventions of CP/M agree with those of Intel's
PL/M systems programming language: The list of CP/M function numbers
is given belcw.

(All Information Contained Herein is Proprietary to Digital Research.)

3

327

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 11 of 57

g8 System Reset 19 Delete File

1l Conseole Input 280 Read Sequential

2 Console Gutput 21 Write Sequential

3 Reader Input 22 Make File

4 Punch Output 23 Rename File

5 List Output 24 Return Login Vector

6 Direct Console 1/0 25 Return Current Disk

7 Get I/0 Byte 26 Set DMA Address

8 .Set 1/0 Byte 27 Get Addr{Alloc)

9 Print String 28 Write Protect Disk
18 Read Console Buffer 29 Get R/0 Vector

11 Get Console Status 39 Set File Attributes
12 Return Version Number 31 Get Addr(Disk Parms)
13 Reset Disk System 32 Set/Get User Code
14 Select Disk 33 Read Random
15 Open File 34 Write Randonm
16 Close File 35 Compute File Size

17 Search for First 36. Set Randdm Record
18 Search for Next .

(Functions 28 and 32 should be avoided in application programs to
maintain upward compatibility with MP/M.)}

Upon entry to a transient program, the CCP leaves the stack
pointer set to an eight level stack area with the CCP return address
pushed onto the stack, leaving seven levels before overflow occurs.
Although this stéck is ustally not used by a transient program (i.e.,
most transients return to® the CCP though a jump to location @88B8H), it
is sufficiently large teo make CP/M system calls since the FDOS
switches to a 1local stack at system entry. 7The following assembly
language progiam segment, for éxample, reads chatacters -continuously
until an asterisk is encountered, at which time gontrol returns to the
CCP (assuming a standard CP/M system with BOOT = §BOOH):

BDOS EQU #0858 STANDARD CP/M ENTRY
CONIN EQU 1 . ;CONSOLE INPUT FUNCTION
ORG gleen” yBASE OF TPA
NEXTC: MVI €, CONIN 7READ NEXT CHARACTER
CALL BDOS ;RETURN CHARACTER IN <a>
CpI T ;END OF PROCESSING?
JINZ NEXTC {LOOP IF NOT
RET :RETURN TO CCP
END

CP/M implements a named file structure on each disk, providing a
logical organization which allows any particular file to contain any
number of records from completely empty, to the full capacity of the
drive, Each drive is logically distinct with a disk directory and
file data area. The disk file names are in three parts; the drive
select code, the file name consisting of one to eight non-blank
characters, and the file type consisting of zero to three non-blank
Characters. The file type names the generic category of a particular
file, while the file name distinguishes individual files in each
category. The file types listed below name a few generic categories

(211 Information Contained Herein is Proprietary to Digital Research.)

4

328

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 12 of 57

which have besn established, although they are generally arbitrary:

ASM Assembler Source PLI PL/I Source File
PRN Printer Listing REL Relocatable Module
HEX Hex Machine Code TEX TEX Formatter Source
BAS Basic Source File BAK ED Source Backup
INT Intermediate Code SYM SID Symbol File

COM CCP Command File $$% Temporary File

source files are treated as a sequence of ASCII characters, where each
vline* of the source f£ile is followed by a carriage-return line-feed
sequence {(BDH followed by 6AH). Thus one 128 byte CP/M record coald
contain several lines .of source text. The end of &n ASCII file 1is
denicted by a control=Z character (1AH) or a real end of file, returned
by ‘the CP/M read operation, Control-z characters embedded within
machine code files (e.g,, COM files) are Lgnored however, and the end
of file condition returmed by CP/M is used to terminate read
opEratiOns.

Files in CP/M can be Ehought of as a sequence of up to 65536
redords of 128 bytes each, numbered from @ through 65535, thus
a110w1ng a maxiimuam of 8'megabytes per file. Note, however, that
although the records may be considered logically contiguous, they may

not be physically cortiguous in the disk data area, Internally, all

files are broken into 16K byte segments called logical extents, so
that counters are edsily maintained as 8-bit values, ‘Although the
decomposition into extents is discussed in the paragraphs which
follow, they are of mo particular consequence to the programmer sirice

-each extent is automatically accessed in both seguential and random

access modes;,

In the file operations stafting with function number 15, DE
usually addresses a file control block (FCB), Transient programs
often use the default file control block area resetved by CP/M at
location BOOT+#@5CH (normally 04 5CH) for simple file operations, The
basic unit of file information is a 128 byte record used for all file
operations, thus a default location for disk I/0 is provided by CR/M
at location BOOTHGE86H (normally $#80H) which is the initial default

DMA address (see function 26). All directory operations take place in

a reserved area which does not affect write buffers as was the case in
réleaser 1, with the exception of Search First and Search Next, where
compatibility is required,

The File Control Block (FCB) data area consists of a sequence of
33 bytes for sequenuial access and a series of 36 bytes in the case
that the file 1is acCessed randamly, The default file control block
normally located at OB5CH can be used for random access files, since
the three bytes starting at BOOT+@@7DH are available for this purpose,

‘The FCB format is shown with the following fields:

(All Information Contained Herein is Proprietary to Digital Research,)
5

'
'\MI'

329

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 13 of 57

-—'w - e e o e

v s e et

‘B9 01 g2 ,., 88 69 18 11 12 13 14 15 16 ... 31 32 33 34 35
where

dr drive code (8 - 16)
® => use default drive for file
1 => auto disk select drive A,
2 => auto disk select drive B,
16=> auto disk select drive P.
£f1..,£8 contain the file name in ASCIX
upper tase, with high bit = 8

t1l,t2,t3 contain the file type in ASCII
upper case, with high bit = §
£1', t2%, and t3* denote the
b1t of these positions,
tl* = 1 => Read/Only file,
t2* = 1 => SY§ file, no DIR list

ex contains the current extent number,
nommally set to 88 by the user, but
in range # - 31 during file I/0

sl reserved for internal systém use

52 reserved for internhal system use, set
to zero on call to OPEN, MAKE, SEARCH

re record count for extent “ex,"
takes on values from £ - 128

d@.,.dn filled-in by CP/M, réserved for
system use .

cr current record to read or write in

a sequential file operation, normally
set to zero by user

r#,rl,r2 optional random record number in the
range 0-65535, with overflow to r2,
rd,rl constitute a 16-bit value with
low byte r@, and high byte rl

Each file being accessed through CP/M must have a corresponding
FCB which provides +the name and allocation information for all

-subsequent file operations, When accessing files, it is the

programmer's responsibility to £ill the lower sixteen bytes of the FCB

and initialize the "cr" field. Normally, bytes 1 through 11 are set

to the ASCII character values for the file name and file type, while
all other fields are zero.

{All Information Contained Herein is Proprietary to Digital Research.)

6

330

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 14 of 57

FCB's are stored in a directory area of the disk, and are
brought into c¢entral memory before proceeding with file operations
(see the OPEN and MAKE functions). The wemory copy of the FCB is
updated .as £ile operations take place and later recorded permanently
on disk at the termination of the file operation (see the CLOSE
command) ,

The CCP constructs the first sixteen bytes of two optional FCB's
for a transient by scanning the remainder of the 1line following the
transient name, denoted by “filél" and “file2" in the prototype
command line described above, with unspecified fields =set to ASCIX
blanks. The first FCB is constructed at location BOOT+PB5CH, and can
be used as-is for subsequent file operations. The second FCB occupies
the d¢ ... dn portion of the first FCB, and must be moved to andther
area of memory beforeé use, If, for example, the operator types

PROGNAKE B:X,ZOT Y.ZAP

the file PROGNAME,.COM is loaded into the TPA, and the default FCB at
BOOT+8@5CH is initialized to drive codé 2, file name "X" and file type
“zoT", The sédond drive code takes the default value #, which is
placed at BOOT+0Q6CH, with the file name “"Y" placed into location
BOQOT+086DR and file type “ZAP" located 8 bytes later at BOOT+3075H.
All remaining fields through “er" arée set to zero, Note again that it
is the programmer's responsibility to move this second file name and
type to -arnother area, usually a separate file control block, before
opening thé file which begins at BOCTH+ZHS5CH, due to the fact that the
open operation will overwrite the second name and type.

If no file names are specified in the original command, then the
fields beginning at BOOT+#85DH and BOOT+B66DH contain blanks. In all
cases, the CCP translates lower case alphabetics to upper casé to be
consistent with the CP/M £ile naming conventions,

As an added convenience, the default buffer area at .location
BOOT+@P89H is initialized to the command line tail typed by the
operator fellowing the program name. The first position containg the
number of c¢haracters, with the characters themselves followihg the
character count, Given the above command line, the area beginning at
.BOOT+0GBPE is initialized as follows:

BOOT+09808H:
+8¢ +01 +82 +03 +P4 +05 +06 +07 +08 +69 +10 +11 +12 +13 +14
1 4 LU 1] (1} B " o R L] 1] X LI 1] . ® o Z (1] uou L] Tu " .1 L Y LU 1 . LLI 1) Z'll " A n " P [

where the characters are translated to upper case ASCII with
uninitialized memory following the last valid character, &gain, it is
the responsibility of the programmer to extract the information E£rom
this buffer before any £file operations are performed, unless the
default DMA address is explicitly changed.

The individual functions are described in detail in the pages
which follow,

(A1l Informatien Contained Herein is Proprietary to Digital Research.)
7

331

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 15 of 57

KA ARK A AR AR KRR RIRI AT R KAk IR T A KK

* *
* FUNCTION #¢ System Reset *
*,

HIEKKAKRK AKX EKR AT AKRKRKRRN AT AT AN hkdk
* Entry Parameters: . *
* Register C: 09H *

KAF KA RAA R I IR AR RAA R TR T ok hkkkhhdhhwn

The system reset function returns control to the CP/M operating
system at the CCP level., The CCP re~initializes the disk subsystem by
selecting and logging-in disk drive A. This function has exactly the
same effect as a jump to location BOOT,

R R e L R TP S T R RN AR TR AL R

% L]
¥ PFUNCTION 1: CONSOLE INPUT *
* R
LS EEES AR ENFIT T PREEES NSRS SR NS S
* Entry Parameters: *
* ‘Register C: plH *
) ’ *
* Returned Value: *
* Register A: ASCII Character *
FhhIhERIAKRRRNEA KA XA RN TARARE R ARk R KA Rk Kk

The console input functien reads the next conscle character to
register A. Graphi¢ characters, alond with carriage return, line
feed, and backspacée (ctl-H) are echoed to the console, Tab characters
(ctl-1) ate expanded in columns of eight characters. A check is made
for start/stop scroll (ctl-S) and start/stop printer echo (ctl-P).
The FDOS does not return to the calling program until a character has
been typed, thus suspending execution if a character is not ready.

TR KRR F R AN E AT AN ARATR AR ANR K NNAKARR AKX

* - *
* FUNCTION 2: CONSOLE OUTPUT ¥
'3 : *
*******ﬁ***************#******%*u#k****
¥ Entry Parameters: *
* Register C: @621 ¥
* Register E: ASCII Character *
¥ *

HHRKEK AR TARR IR RAFFFARRR I A AT R A AR AR Rk *

o The ASCII character from register E is sent to the " console
device, Similar to function 1, tabs are expanded and checks are made
for start/stop scroll and printer echo.

(All Information Contained Herein is Proprietary to Digital Research.)

8

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 16 of 57

AEKEKR A hTh A kR hkkhh kg kdh Kdhddhkhhkwdkxhkkkdok

* *
* FUNCTION 3: READER INPUT *
L1 *
**********************************&*ﬁ**
* Entry Parameters: *
* Register C: @38 *
* *
¥ Returned Value: *
* Register A: ASCII Character *

The Reader Input functidh reads the next character £rom the
logical teader into register A (see the IOBYTE definition in the "CP/M
Alteration Guide"), Control does not return until the character has
been read.

Fe & J K.k de A B K K de g gk ke ook R Rk R e R ok R e K e e Rk ok

* *
* FUNCTION 4: PUNCH QUIPUT *
*

J k% gk de kKoo dok ok ok ok ko & KK KT de ok ok ok ok ek e ook de de ke
* Entry Parameters: *
* Register C: d4H *
* Register E: ASCII Character - *
*

*************i*************************

L The Punch Qutput function sends the character from reglster E to
-—7 the logical punch device,

KA I KK IREE R IR TR KRRERR KT REREA KKK RAKKRR K

* *
* PFUNCTION 5: LIST OUTPUT *
* *
***********ﬁ*************ﬁt%*ﬁﬁ#*kﬁ****
* Entry Parameters: - *
* Register C: @5B _ *
* Register E: ASCII Character :
L

AR HARIKK R I RI A AR IR EA AR KRR A A AN KRR TR RA NN

The List OQutput function sends the ASCII character in register E
to the logical listing device,

(A1l Information Contained Herein is Proprietary to Digital Research.)

9

332

)

333

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 17 of 57

'k*******:**‘**-*‘*'k**-***'****.***'*********";i‘c**
¥ *
* FUNCTION 6: DIRECT CONSOLE 1/0 *
*
******'*-**‘k-‘l('*****'*.*'k*'*'*t*.**********'*k***
Entry Parameters: *
Register 'C: @6H) *
Register E: @FFH (input) or *
char (output)

*

%* %R ¥ X X

*

*

Returned Value: *

Register A: char or status *

' {no value) *

hkkhhkbhkbkkthhhhhkhhkhhhkhkRAhkkkxrdkkkhhkkx
Direct console 1/0 is supported under CP/M for those specialized
applications where unadorned console input ‘and output is required.
Use of this functioen should, in general, be avoided since it bypasses
all of CP/M's normal control character furctions (e.g., control-s. and
control-P}, Programs which perform direct I/0 through the BIOS under
previous releases of CP/M, however, should be changed te use direct
I/0 under BDOS so that they can be fully supported under future

releases of MP/M and CP/M.

Upon entry to function 6, register E either contains hexadecimal
Ff, denoting a console input request, or register E contains an ASCII
character, If the input value is FF, then function 6 returns A = (0
if no character is ready, otherwise A c¢ontains the next consocle input
character,

If the input value in E is not FP, then functjion 6 assumes that
E contains a valid ASCII character which is sent to the console,

{All Information Contained Herein is Proprietary to Digital Research.)

10

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 18 of 57

O A L 2 2R S SR R e R L s 2

.4 *
* FUNCTION 7: GET I/O BYTE *
* *x
'*****#**t***%*******f*****************t
* Entry Parameters: *
* Registeér C: @7H *
* *
* Returned Value: _ *
* Register A: L/0 Byte Value *
*************&**k**********t********ki*

The Get I/0 Byte function returns the current value of IOBYTE in
register A, See the "CP/M Alteration Guide" for IOBYTE definition.

AkFhAERAhkahrkdh ke xRk xhkhhkrdkhhhrrhax

X *
* FUNCTION 8: SET I/0 BYTE ':
&

Fodk ke ke dkk kA RI KKK AR IR ARKIRRT KRR AR KNI IR ARk
* Entry Pardmeters: *
w Register C: @8BH *
* Register E: I/0 Byte Value *
& *

KhkkkRkkhkkdkhhh Xk kA IRk ki ke krrh kK

The Set I/0 Byte function changes the system TOBYTE valug to
that given in register E,

v. } . . R

K FAREKIIIFERXAER DA AR ARR R KR LKA R IR K hhokx ok
*) *
* FUNCTION 9: PRINT STRING :
* ;
KKEIHR KR AN EIAARRKRRRXRRECK KA KA A K * ARk K
¥ Entry Parameters: " *
* Register C: B9H *
* Registers DE: String Address *
* : *

KA ANARR LR R TR ARNARRANRRAR AR KA R AR N Ak h k&%

The Print String function sends the character string stqred in
memory at the location given by DE to the console device, until a “§"
is encountered in the string, Tabs are expanded as in function 2, and
checks are made for start/stop scroll and printer echo.

(A1l Information Contained Herein is Proprietary to Digital Research.)

11

334

335

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 19 of 57

*****t***********t*********************
* *
* PUNCTION 1@: READ CONSOLE BUFFER *
* *
******k**********************k********t
* Entry Parametersr

Register C: BAH

Registers DE: Buffer Address

Console Characters in Buffer

*
*
*
%
*
*
.*****************?***ﬁ**#**#**********

*
*
x
* Returned Value:
*
*

_ The Read Buffer function reads & line 6f edited console input
into a buffer addressed by registers DE. Console input is terminated.
when either the input buffer overflows. The Read Buffer takes the
forms.

DE: +8 %41 +2 +3 +4 45 +6 +7 +8 .- . . . +n

————..—-...——————-_-.-—.._-...-.-...-...‘—._-.—...._'_..___..-_—-.——.--

where "mx* is the maximum number of characters which the buffer will
hold (1 to 255), "nc“ is the number of characters read {set by FDOS
upon return), followed by the characters read from the console, "if n¢
< mx, then uninitialized positions follow the last character, denoted
by. "22" in the above figure, A nomber of control functlons are
tecognized during line editing:

rub/del removes and echoes the last character
ctl-C reboots when at the beginning of line
ctl~E causes physical end of line

¢tl-H backspaces oné character position

ctl-3 (line feed) terminates irnput line

ctl-M (return) terminates input line

ctl~R retypes the current line after new line
€tl-U removes curcnt line after new line
ctl-X backspaces to beginning of current line

Note also that certain functions which return the carriage to the
leftmost position (e.g., ctl-X) do so only to the column position
where the prompt ended (in earlier releases, the carriage returned ¢o

the extreme left margin). This convention makes operator data input
and line correction more leglble

(All Information Contained Herein is Proprietary to Digital Research.)

12

336

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 20 of 57

AREKKKI IR IKRKRAKERKRRKRAERKIRAXEI I TR KK

* *
* FUNCTION 11: GET CONSOLE STATUS *
* *

***********#*****k***********t*****t***

* Entry Parameters: *
Register C: ©BH

Register A: Console Status

KKK AKAKRKRIRAKRE KKK KRN KRR KA Kk dkdkdkdkkdhx

* %*
* *
* Returned Value: *
* *
* *

_ The Console Status function checks to see if a character has
been typed at the console. If a character is ready, the value @FFH is
returned in register BA; ‘"Otherwise a 00H value is returned.

KK KRARKKKARKKERRRANRARNA KRR KA ERA KX kR *

* *
* FUNCTION 12: REPURN VERSION NUMBER *
* *

B R A Y s L i R R I RS LSS T X2

* Entty Parameters: *
* Register C: @CH *
* *
* Returned Value:] *
¥ Registers HL: Version Number *
KR KRAKRFERNERRERFFAARRKE R TR E KR R X
Function 12 provides information which allows version
independent prograiming. A two-byte value is returned, with H = @0

désignating the CP/M release (H = @1 for MP/M), and L = 86 for all
releases previous to 2.8: cp/M 2.9 returnss a hexadecimal 29 in
register L, with subsequent version 2 releases in the hexadecimal
range 21, 22, through 2F, Using function 12, for example, you .can
write application programs which provide both seguential ahd random
access functions, with random access disabled when operating under
early releases of CP/M,)

(All Information Contained Herein is Proprietary to Digital Research.)

13

337

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 21 of 57

RN UERAE R R I AR RAARRKRRRARKKRARRI I AR ARk Kk k&

x *
* PFUNCTION 13: RESET DISK SYSTEM *
;*ttkﬁ****f****************t***t**x**f;
* Entry Parameters: *
* Register C: ODH :
*

KRAKI AR AR A AR TRIARNKRKIRARIIR A AR AR R AR XK

The Reset Disk Function is used to programmatically restore the
file system to a reset state where all disks are set to read/write
{see functions 28 and 29), only disk drive A is selected, and the
default DMA. address is reset to BOOT+P@#88H. This tunctlon camr be
used,; for example, by an application program which requires a disk
change without & system reboot,

EREERRARRK AR AR E AR RAEATREARRKKNA AR R XNAR I

* ' *
* FUNCTION 14: SELECT DISK :
% .
KKK RERRKEAREAR Kk hkhRkkkkkhkhkkhrhkhhkhnk
* Entry Parameters:) *
* Register C: DOEH *
* Register E: BSelected Disk *
k.3 ' *

KARNKARRXRKAKRKXKEARKRKRRXTRARF RN I TR kA Xk hhF

The Select Disk function designates the disk drive named in
register E as the default disk for subsequent file operations, with E
@ for drive A, 1 for drive B, and so-forth through 15 corresponding
to drive P in a full sixteen drlve system. The drive is placed in an
"Qn—llne" status which, in particular, activates its directory until
the next cold start, warim start, or disk system reset operation, If
the disk media is changed while it is on~line, the drive automatically
goes to a read/only status in a standard CP/M environment (see
function 28). FCB's which specify drive code zero (dr = @8H)
automatically reference the currently selected default drive, Drive
code values between 1 and 16, however, ignore the selected default
drive and directly reference drives A through P,

{All Information Contained Herein is Proprietary to Digital Research.)
14

338

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 22 of 57

hkhhkkkhdhdhhhhkrkkhhkrndkkkkrkkkkhkxhkhk

* x
% FUNCTION 15: OPEN FILE :
- .

xRk khhkhk kR kb bRk kAT XKk Nk kkhk
* Entry Parameters:
Register C: OFH
.Registers DE: FCB Address

x. *
* *
* *
* Retuarned Value: *
* *
* *

Register A: Directory Code
ARk RAKRkIKRKAA IR KRR IAAIR T AR Eh IRk dhdk

The Open File operation is used t9o activate a file which

curtently exists in the disk directory for the currently active user

number. The FDOS scans the referenced disk directory for a match in
positions 1 through 14 of the FCB referenced by DE (byte sl is
automatically zeroed), where an ASCII question mark (3FH) matches any
directory character in any of these positions. Normally, no guestion
marks are included and, further, bytes "ex" .and “"s2" of the FCB are
Zerq.

~ If a directory -element is matched, the relevant directory
information is copied into bytes d# through dn of the FCB, thus
allowing access to the files through suvbsegquent read and write
operations, Note that an existing file must not be accessed until a
sucessful open operation is completed. Upon return, the open function
returns a "directory code” with the value f through 3 if the open was
successful, or OFFH (255 dec¢imal) if the file cannot be found. TIL
question marks occur in the FCB then the first matching FCB is
‘agtivited. Note that the current record ("cr") must be zerced by the
progcram if the file is to be accessed sequentially from the first
record, .

(All Information Contained Herein is Proprietary to Digital Research.}

15

'-.....vl

339

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 23 of 57

FEKKh Ak AT AKARRFRR KR EI IR NI AR AR

* *x
* FUNCTION 16: CLOSE FILE :
x

Kk Ak kAR I KA RRRRREXREN I AT TR F AR RARAX
* Entry Parameters: *

* Register C: 18R *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *
AR RRRRRFAEFRAKRRNER T AT AR dd bbbk R hkd

The Close File function performs the inverse of the .open file
furiction, Given +that ‘the PCB addressed by DE has been previously
activated through an open or make function (see functions 15 and 22),
the close function permanently records the new FCB in the referenced
disk directory. The FCB matching process for the close is identical
to the open function., The directory code returned for a successful
close operation is 8, 1, 2, or 3, while a @FFH {255 decimal) is
returned if the £ile name cannot be found in the diréctory, A file
need ot be closed if only read opeérations have taken place, If write
operations have occurred, however, the close operation is necessary to
petmanently record the new directory infotrmation.

(All Information Contalned Herein is Proprietary to Digital Résearch.)

16

J

340

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 24 of 57

B A R T X T S LA X X2 2 S T XX L T 2]
F x

* FUNCTION 17: SEARCH FOR FIRST :

*.
‘_*'k-***-**‘k**'***********‘*.**‘*****_-**'********
* Entry Parameters:
Register C: 11lH _
Registers DE: FCB Address
Returned Value:

Redister A: Directory Code
'.k**‘**M****#********k**'**.***—*‘k**-»*.**’k***

¥ % % % *

*
*
*
&
*
*

Search Pirst scans the directory for a match with the file given
by the FCB addressed by DE. The value 255 {hexadecimal FF) 1is
returned if the file is not found, othetwise 8, 1, 2, or 3 is returned
indicating the file .is present. In the case that the file is found,
the curtent DMA addréss is filled with the record containing the
directory entry, and the relative starting position is A * 32 (i.e.,
rotate the A register left 5 bits, or ADD A five times). Although not
noimally required for application programs, the directory information
can be extracted from the buffer at this position.

An ASCII guestion mark (63 decimal, 3F hexadecimal) in any

position from “f1" through “ex" matches the corresponding field of any

directory entry on the default or auto-gselected disk drive. IEf the
»dr” field contains an ASCII question mark, then the auto disk select
function is <disabled, the default disk is searched, with the search
function returning any matched entiy, allocated or free, belonging ‘to
any user number, This latter function is not normally used by
application programs, but does allow complete flexibility to scan all
cirrent directory values. If the "dr* field is not a question mark,
the "s2Z" byte is automatically zeroed.

*****?#*#**************t**#?**t#*ﬁ*1***
* . *
* PFUNCTION 18: SEARCH FOR NEXT *
* %
T 1 T 2 2L T2 22 T S L L
* Entry Parameters: *
¥ Register C: 12H I
* Returned Value: - *
& Register A: Directory Code *
AR AKIA IR IR RXKRARRARARRE KK AKX N kA hdhrhkkhx

The Search Next function is similar to the Search First
function, except that the directory scan continues from the last
matched entry, Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match,

{All Information Contained Herein is Proprietary to Digital Research.]}

17

341

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 25 of 57

AR AR AR A AT T KARKERKRIIAK AR R KATIIRAK

- *
* FUNCTION 19: DELETE FILE :
*

KEKARE NIk hhk ok hkhkhxdrhhhkhhkdhhkhkikx
* Entry Parameters:
Register C: 13H
‘Registers DE: FCB Address

%

Register A: Directory Code

*
*
*
x
*
KARKKEREFRE AR AAK KRR ARNANRR SRR R AR AR AR KR K hh

&

*x

* .

* Returned Value:
x*

*

The Delete File function removes files which match the FCB

addressed by .DE. The filename and type may contain ambiguous

references {i.e., guestion marks in various positions), but the drive
select c¢ode cannot be ambiguous, as in the Search and Search Next
Eunctiodns,

Function 19 returns a decimal 255 if the referenced file or
files cannot be found, otherwise a value in the range 8 to 3 is
returned,

W B E K dde e ke Fe ok kg bk ke s ok Fe ok S o Sk 3k ok Yo o e o S o K ek ke ok

* *

¥ FUNCTION 20: READ SEQUENTIAL :

*

AR AKAR R ERKN KRR RRERXARA LA KRAR KRNI R AT AT, R

Entry Parameters: *
Register C: 14n
Registers DE: ©FCB Address

Returned Value:

Register A: Directory Code
’**************************J\'**********

Given that the FCB_addressed'by DE has been activated through an
open or make function (numbers 15 and 22), the Read Sequential
function reads the next 128 byte record from the file into memory at
the current DMA address, the record is read from position "cr™ of the
extent, and the "or" field is automatically incremented +t6 the next
récoxrd position, I1f the “"cr" field overflows then the next loglcal
extent is automatically opened and the "cr" field is reset to zero in
preparation for the next read operation, The value @0H is returned in
the A register if the read operation was successful, while a non-zero
value is returned if no data exists at the next record position (e.g.,
end of file occurs),

*
% *
® *
* *
* *
* *
* *

(All Information Contained Herein is Proprietary to Digital Research.)

18

342

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 26 of 57

AARKFRARFFEFRRAREN A A AN KRR AR AR Rk hhhdadk

*
*
* FUNCTION 21l: WRITE SEQUENTIAL :
*
RRAKNKR AR FT AR IARAKRRKRRARKAERRNARNKR R AR KA bk *k
¥ BEntry Parameters: *
* Register C: 15H *
* Registers DE: FCB Address :
*
* Réturned. value: *
* Register A: Directory Code *
HEKAH K AR AKAKREARARA TR KRR AKX EKRXRRER RN T NN

Given that the FCb addressed by DE has been activated through an

open or make function (numbers 15 and 22), the Write Seguéntial

function writes the 128 byte data record at the current DMA address to
the file named by the FCB., the record is placed at pesition "ct" of
the file, and the *cr" field is automatically incremented to the next
record position, If the “cr* field.overflows then the next logical
extent is automatically opened and the "er® field is reset to zero in
preparatlon for the next write operation. Write operations can take
place into an existing file, in which case newly written records
overlay those which already exist inm the file, Register A = #0H upon
return from a successful write .operation, while 'a nen-zero value
indigates an unsuccessful write due to a full disk.

ERRF AR A KKK KRR AR R AR KKEARR R Ik kk*k

* *
* FUNCTION 22: MAKE FILE *
* *.
ARKAXNKARAAAERKNNRAKNRRNRKAK KA AR RK AR RARE
* Entry Parameters: *

Register C: 1l6H
Registeérs DE: FCB Address

©

Register A Dlrectory Code

*
*
*
*
*
AHIKNFK KA KR AR AN A ARKR AR IR AR R IR ARRANE

*
*
*
: Returned Value:
*

The Make File operation is similar to the open file operation
except that the FCB must name a file which does not exist in the
currently referenced disk directory (i.e., the one named explicitly by
a non~-zero "dr" code, or the default disk if “dr" is zero)., The FDOS
creates the file and initializes both the directory and main memory
value to an empty fileé, The programmer must ensure that no duplicate
file names occur, and a preceding delete operation is sufficient if
there iLs any possibility of duplication., Upon return, registecr A = @,
1, 2, or 3 if the operation was successful and GFFH (255 decimal) 1if
no more directory space 1s available, The make functiom has the
side-effect of activating the FCB and thus a subseguent open is not
necessary.

{311l Information Contained Herein is Proprietary to Digital Research,)

19

343

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 27 of 57

HREARKAKRAFIRARERRNARKARAA IR R R ER AT K I A K

* *
* FUNCTION 23: RENAME FILE :
¥* .

******ﬁ****t**********t***tt***ﬁ*******
Entry Parameters:
Begister C: 17H)
Registers DE: FCB Address

b d

Returned value:

Register A: Directory Code

*
*
k
%
*
KKK A A KRR FARRANNERF RN KK AR RA R E TR X

*
*
*
*
*
*
*

The Repame function uses the FCB addressed by DE to change all
occurrences of the file named in the first 16 bytes to the file named
in the second 16 bytes, The drive code "dr* at position 8 is used to
select ‘the -drive, while the -drive code for the new file name at
positiofi 16 of the FCB is assumed to be zero, Upofi return, register A
is set to a value hetween 6 and 3 if the rename was successful, and
@FFH (255 decimal) if the first file name could not be found in the
directory scan;

KAKKAKKIRRKR AL LR AR RAARKIXRKR KRR IR WA K kkkk
* *
* FUNCTION 24: RETURN LOGIN VETTOR ¥
* *
N I R e S N T2 EAR 22222 2 2 2 2522

* EBEntry Parameters: *
* Register C: 18H *
&k . x
#* Returned Values . *
* Registers HL: Login Vector *

*

**********t*k*k*******{****ﬁt**i******

The login vector value returned by CP/M is a 16-bit valué in HL,
where the least significant bit of L ¢orresponds to the first drive A,
and the high order bit of H correspends to the sixteenth drive,
labelled P. A ™p" bit indicates that the drive is not on-line, while
a “1" bit marks an drive that is actively on-line due to an explicit
disk drive selection, or an implicit drive select caused by a file
operation which specified a non-zero ™“dr" £field, Note that
compatibility is maintained with earlier releases, since registers A
and L contain the same values upon return.

(All Information Contained Herein is Proprietary to Digital Research.)

20

344

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 28 of 57

Frkhkkhhkkhkhkkbhkhhakkkk Ak kkkhhkhkdhkixrk

* *
* PUNCTION 25: RETURN CURRENT DISK *
* *

A L L I I T2 I Y222
* Entky Parameterss '
Register C« 19%H

*
* *
* *
* Returnéd Value: _) *
* Register A: Current Disk *
*****************t*********************

* Function 25 returns the currently selected default disk number
in register A, The disk numbers range from § through 15 corresponding
to dirives A through P.

AR A IR R R RAK A RERIRE LTSRS A RN LR AR IR RN,

* *
* PUNCTION 26: SET DMA ADDRESS :
N .
FRKRRKRKINAR KRN KR AT RAAIRERRARAE R R AT hI oA ¥
* Entry Parameteis: _ *
* Register €; J1AH - *
* Registers DE: DMA Address *
x *

KR AR KX &K Rk KKK Rk Foddedk K % HK K ok Aok g ek Rk

"DMA" is an acronym for Direct Memory Address, which is often
used ‘in connection with disk controllers which directly access the
memary of the mainframe computer to transfer data to and from the disk
subsysteém, Although many computer systems use non-DMA access {i.e.,
the data is transfered through programmed 1/0 operations), the DMA
address has, in CP/M, come to mean the addréss at which the 128 byte
data record resides beforé a disk write and after a disk read, Upon
cold start, warm start, or disk system reset, the DMA address is
automatically set to BOGOT+@@8GH. The Set DMA function, however, can
be used to change this default value to address another area of memory
where the data records reside. Thus, tlie DMA address becomes the
value specified by DE until it is changed by a subsequent Set DMA
function, cold start, warm start, or disk system reset,

{All Information Contained Herein is Proprietary to Digital Research.)

21

. J;
o

345

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 29 of 57

* *
¥ FUNCTION 27: GET ADDR(ALLOC) f
x &)
KA RKARRRN KA KA I Ak hd IS hhhhkkhdbkk kbR i ihd
* Bntry Parameters: _ *
* Register C: 1BH *
* X
* Returned Value: *
* Registers HL: ALLOC Address *
KkdkhkkhkAhkhkAhkA XA R X EAATR LA kAKX EARIARAARNT K

An “"allocation vector" is maintained in mwain memory for each

on-line disk drive, Various &ystem programs use the information

provided by the allocation vector to determine the amount of remaining
storage (see the STAT program), Function 27 returns the base address
of the allocation vector for the currently selected disk drive, The

allocation information may, however, be invalid if the .selected digk

has been marked read/only. Although this function is not normally
used by application programs, additional detalls of the allocation
vector are found in the “CP/M Alteration Guide,

kAR XKAXR ARk hhk bk AR AR IR h IR AR RAR I RN *d

* *
* PUNCTION 28: WRITE PROTECT DISK :
¥* .
ﬁt**#****&j***it**t********************
* Entry Paraneters: *
¥ Register C: 1CH *
% - *

kA RA R A RA A REIRRARRR R RR AT A AN RN AR A & kK

The disk write protect function provides temporaty write
protection for the currently selected disk. Any attempt to write to
the disk, before the next cold or warm start operation produges the
message

Bdos' Err on d: R/O

(311 Information Contained Herein is Proprietary to Digital Research.)

22

346

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 30 of 57

KRKKEKKAF K FRRRIRRARRR T A AR ARKRRFAIRAIK AKX

X *
¥ FUNCTION 29: GET READ/ONLY VECTOR *
1 x
k**********k****#***i**t**t*****%******
¥ Entry Pdrameters: *
* Register ¢: 1pH *
* X
¥ Returned Value: *
* Registers HL: R/0 Vector Value*

Function 29 returns a bit. wvector in register pair BL which
indicates drives which have the temporary read/only bit set. Similar
to function 24, the least sionificant bit gorresponds to drive A,
while the most sdignificant bit corresponds to drive P. The R/0 bit is
set either by an explicit call to function 28, or by the automatic
software mechanisms w1th1n CP/M which detect changed disks.

KEARKRKKIERRRKE XK K KK R F KKk xRk ok deok ok ko kon

* *
* FUNCTION 30: SET FILE ATTRIBUTES *
* *®

KEKARKRKEKRKKRERRAAKRRKITARA R KR FH Ik kdhhAdk
* Entry Parameters:

*
* Register C: 1EB *
* Registeérs PE: FCB Address *
* *
* Returned value: *
* Register A: Directory Code *
************j**************t*********j*

The Set File Attributes function allows programmatic
manipulation of permanent indicators attached to files. In
particular, the R/0 and Sysktem attributes (tl' and t2') can be set or
reset. The DE pair. addresses an unambiguous file name with the
appropriate attributes set or reset. Function 38 searches for a
mateh, and changes the matched directory entry to contain the selected
indicators, Indicators Fl* through f4' are not presently used, but

may be useful for applications programs, since they are not 1nvolved
in the matching process during file open and close operations.

Indicators £f5' through £8' and t3' are reserved for future system
expansion. '

(All Information Contained Herein is Proprietary to Digital Research.)

23

347

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 31 of 57

ARKKKRK R KA KA KZERAARK AR RAXAX Nk * I ALK KK kK
o *
* PFUNCTION 31: GET ADDR(DISK PARMS) *
* *
KA A KA AR RRIARARE RN ARAKRKRRI AN IR AR I RA T %

* PEntry Parameters: *
* Register C: 1FH *
* *
* Returned Value: *
*® Registers HL: DPB Address *
**************k************************

The address of the BIOS resident disk parameter block is
returned in HL as a result of this function call. This address can be
used for either of two purposes., FPFirst, the disk parameter values can
be extracted for display and space computation purposes, or transient
programs can dynamlcally change the values of current disk parameters
when the disk enviromment changes, if required., Normally, application
programs will not reguire this facility.

LEREE SIS F NSRRI RS SR A ECS LRSS RE S

. ®
* PFUNCTION 32: SET/GET USER CODE *
* *
ERE RS 2 T X AT PR EI IR SI SR CN &
¥ Entry Parameters: *
* Register C: 2080 ‘ *
* Register E: @FFH (get) or *
* User Code (set) *
* *
* Returned Vdlue: *
* Register A: Current Code or *
* (no value) ¥
KA KA RA AR IR KR ERNKRKRRK AR AT AR RN KXKRET AN K

An applicdtion progr;m can change or interrogate the currently
active user numbet by calling function 32. If register E = OFFH, then
the wvalue of the current user number is returned in register A, where

the value is in the range @ to 31. If register E is not OFFH, then
the current user number is changed to the value of E (modulo 32).

{All Information Contained Herein is Proprietary to Digital Research,)

24

348

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 32 of 57

KAKHRK KR AR ARKRKRKKKRAI I TR AR AR RRFT AT dx

& *
* FUNCTION 33: READ RANDOM :
E

KAXIKFhhkhkrkhdhhhhhhhkhkhhhhrhkhkhhkhkxwihx
* Entry Pdrameters: *

Register C: 21lH *
Registers DE: PCB Address *
*
*

*
Register A: Return Code _
PR R L XS ETTDLTTETS RSN E T L2 RS RSt

s

*®

*

* Returned Value:
* ;
&

Thée Read Random function is similar to the seguential file read
operation of previous releases, except that the read operation takes
place at a patticular record number, selected by the 24-bit wvalue
constructed from the three byte field following the FCB (byte
positions r® at 33, rl at 34, and rZ at 35). Note that the sequence
of 24 bits is stored with least significant byte first (@), middle
byte next (rl), and high byte last (r2). Cp/M does not reference byte
r2, except in computing the gize of a file (function 35). Byte r2
must be zero, however, since a non-zero value indicates overflow past
the end of file,

Thus, the ré,rl byte pair is treated as a double-byte, or "worg"
value, which contains the record to read. This value ranges from ¢ to
5535, providing access £0 any particular record of the 8 megabyte

‘File. In order to process a file using random access, the base extent

(extent @) must first be opened. Although the base extent may or may
not contain any allocated data, this ensures that the file is properly
recorded in the directory, and 1is visible in DIR reguests, The
selected record number is then stored into the random record field
{r®,rl)y, and the BDOS is called to read the record. Upon return ‘from
the call, register A either contains an error code, as listéd below,
or the value @ indicating the operation was successful, In the
latter case, +the currént DMA address contains the randomly accessed
record, MNote that contrary.to the sequential read operation, the
record number is not adVanced, Thus, subseguent randem read

operations continue to read the same record,

Upon each randem read operation, the logical extent and current
record values are automatically set. Thus, the £file can be
sequentially read or written, starting from the current randomly
accessed position. Note, however, that in this case, the last
randomly read record will be re-read as you switch from random mode to
sequential read, and the last record will be re-written as you switch
to a sequential write operation, You can, of course, simply advance
the random record position following each random read or write to
obtain the effect of a sequential I/0 operation,

Error codes returned in register A following a random read are
listed below, |

(All Information Contained Herein is Proprietary to Digital Research.)

25

349

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 33 of 57

#1 reading unwritten data

$2 {(not returned in random mode)
@83 cannot close current extent

84 seek to unwritten extent

B5 (not returned in read mode)
96 seek past physical end of disk

Error code @1 and #4 occur when a random read operation .accesses a
data block which has not been previously written, or an extent which

has not been created, which are equivalent conditions, Error. 3 does

not normally occur under propér system operatioh, but can be cleared
hy simply re-reading, or re-opening extent zero as long as the disk is

not physically write protected., Error code 6 occurs whenever byte r2

is non-zero undei the current 2.0 release, Normally, non-zero return

‘codes <can be treated as missing data, with zero return codes
dindicating operation complete,

(All Information Contained Herein is Proprietary to Digital Research.)

26

350

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 34 of 57

************************************#*k

* X
* FUNCTION 34: WRITE RANDOM :
*

k******j***k********%******************
* Entry Parameters: *

* Register Ct 228 ¥
* Registeérs DE: FCB Address *
% *®
* Returned Value: ¥
* Register A: Return Code ®
KKK KRKREAKREKRERRARAR AN AT AT R A A h b dA X

The Write Random operatiom ig initiated similar to the Read
Random call, except that data is written to the disk from the ourrent
DMA address, Further, if the disk extent or data block which is the
target of ‘the write has not yet been allocated, the allocation is
performed before the write operation continues. As in the Read Random
operation, the random record rumber is'nQt changed as a result of the
write, The logical extent number and current record positions of the
file control block are set to correspond to the random record which is
being written, Again, sequential redd or write operations can
commence following a random write, with the mnotation that the
currently addressed re¢ofd is éither read or rewrittem again as the
sequential operation begins. You can also simply advdnce the random
record position following each wiite to get the effect of a sequential
write operation. Note that in particular, reading or writing the last
record of an extent in random mode does not cause an automatic extent
switch as it does in seguential mode,

The error codes returned by a random write are identical to the
random read operation with the addition of error code 45, which

indicates that a new extent cannot be created due to directory
overflow.

(A1l Information Contained Herein is Proprietary to Digital Research.)

21

351

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 35 of 57

ARKARKKRRK R I RAKRKNKRAFIRARNNATAR Ik R Ak kK AREA

* *
* PUNCTION 35: COMPUTE FILE SIZE :
*

KAXFN ************‘****‘k*****************
¥ Entry Parameters:
Register C: 23H
Registers DE: FCB Address

Random Record Field Set

*
*
*
*
*
%
KK AK IR A KRR KRR KKERRIREA R R IR SR F RNk

*
*
*,
: Returned Value;
*

when computing the size of & file, the DE register paix
addresses .an FCB in random mode format (bytes r#, rl, and r2 are
present). The FCB contains an unambiguous file name which is used in
the directory scan. Upon return, the random record bytes contain the
“virtual” file size which is, in effect, the record address of the
record following the end of the file. if, following a call teo
function 35, the high record byte r2 is 01, then the file contains the
maximum record count 65536, Otherwise, bytes r® and rl g¢onstitute a

16-bit wvalue (r8 is the least significant byte, as before) which is
the file size.

Data can be appended to the end of an existing file by simply
calling functiopn 35 ¢to set the random record position to the end of
file, then performing a seguence of random writes starting at the
preset record address.

_ The virtual size of a file corresponds to the physical size when
the file is written sequentially. If, instead, the file' was created
in random mode and “holes" exist in the allocation, then the file may
in fact contain fewer records than the size indicates., 1€, for
example, only the last record of an eight megabyte file is written in
random mode (i.e,, record number 65535), then the virtual size 1is
65536 records, although only one block cof data is actually allocated.

(A1l Iriformation Contained Herein is Proprietary to Digital Research.)

28

352

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 36 of 57

N T e T 1222222 AR RS 2 X2 S22 T A0S

* *
* FUNCTION 36: SET RANDOM RECORD :
. ;

KRKINEF Rk A AR AR KRR RN kA KRRk kT b kA%
Entry Parameters:
Register c: 24H
Registers DE: FCB Address

E

x
* *
* %*
. *
* Returned Value: *
% x
b *

Random Record Field Set
*****“k*****.****'W**'*'*******_***'*#***-‘k**

Thé Set Random Record function caises the BDOS to automatically
produce the random record posgition fiom a file which has been read or
written sequentially to a particular point, The function can be
useful in two ways. '

First, it is often necessary to initially read a&and scan a
seguential file to extract the positions of various "key" fields. As
each key is encountered, function 36 is called to ¢ompute the random
record position for the data corresponding to this key. If the data
unit size is 128 bytes, the resulting record position is placed into a
table with the key for later retrieval. aAfter scanning the entire
file and tabularizing the keys and their record numbers, you can move

instantly to a particular keyed record By performing a random read

using the corteésponding random record number which was saved earlier.
The scheme is easily generalized when variable record lengths are
involved since the program need only store the buffer-relative byte
position along with the key and record number in order to find the

exact starting position of the keyed data at a later time.’

A second use of function 36 occurs whén sSwitching from a
sequential read or write over to random read or write, A file is
sequentially accessed to a particular point in the file, function 36
is called which sets theé record number, and subseguent random read and
write operations continue from the selected point in the file,

(A1l Information Contained Herein is Proprietary to Digital Research.)

29

353

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 37 of 57

3. A SAMPLE FILE-TO=FILE COPY PROGRAM.

The program shown below provides a relatively simple example of
file operations. The program source file is created as COPY.ASM using
the CP/M ED program and then assembled vwsing ASM or MAC, resulting in
a “"HEX" file, The LOAD program is the used to produce a COPY.,COM file

which executes directly under the CCP. Thée program begins by setting

the stack pointer to a lecal area, and then proceeds to move the
second name from the default area at BP6CH to a 33-byte file control
block called DFECB. The DFCE is then prepared for Eile operations by
clearing the current record field, At this point, the source and
déestination FPCB's are ready for processing since the SFCB at @##5CH is
properly set-up by the CCP 'upon entry te the COPY program. That is,
the. first name is placed into the default fcb, with the proper fiélds

zeroed, including the current record field at BB7CH, The progran
continues by opéning the source file, deleting any exising destination
file, and then creating the destination file. If all this is

succeéssful, the program loops at the label COPY until each record has
been read from the source file and placed into the destination file,
Upon completion of the data transfer, the destination file is closed
and the program returns to the CCP command level by jumping to BOOT.

sample file-to-file copy program
at the ccp level, the command
copy a:x.y bru.v

copies the file named x.,y from drive
a to a file named u.v on drive bh.

¢ we 'Ns Se we we mr we Se

2609 = boot equ gedoh ; system reboot
pa@pgs = bdos equ gOB5h ; bdos entry point
#85c = fcbhl egu - B65ch ; first file riame
BB5¢c = sfcb egu - fcbl ; source ficb
gPec = feb2 equ. ggeéch ; second file. name
pese = dbuff egqu p880h ; default buffer
2100 = tpa equ 8198h ; beginning of tpa
.]
BBAY = printf equ 9 : print: buffer func#
g@et = openf equ 15 ; open file func
pal1g = closef equ 16 ; close file func#
013 = deletef egu 19 ; Gelete file func#
9@14 = readf egu 20 ; seguential read
pels = writef equ 21 : sequential write
gele = makef equ 22 ; make f£ile func#
8lgo org tpa ; beginning of tpa
P166 311bB?2 Ixi sp,stack; local stack

H move second file name to dfcb
B163 Geld mvi c,lé6 ; half an fcb

(All Information Contained Herein is Proprietary to Digital Research.)

30

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 38 of 57

0185 1loche 1xi d,fchb2 ; source of move
7108 21dapdl 1xi h,dfcb ; destination fcb
P18b 1la mfcb: ldax d ; source fcb
glgc 13 inx a ; ready next
gled 77 nov m,a ; dest fcb
0loe 23 inx h ; ready next
g1ef ad dcr c ; count 16,,.0
0118 c28b0ol inz mEch ; loop 16 times

: name has been moved, zero cr
6113 af xra a ; a = 8poh
9114 32fapl sta dfcber ; cutrent rec = @

source and destination fcbh's ready

EYIE T RN

8117 115ch@ Ixi d,sfcb ; source file
#lla cdé%svl - ¢all open ; error if 255
3114 118741 1xi d,nofile; ready message
8120 3c inr a ;255 becomés 0
$121 cc6l@l : cz finis ; done if no file

; source file open, prep destination
9124 113a01 1xi d;dfchb. ; destination
0127 cd7381 call delete ; remove if present

. H .
BlZ2a 11dadl 1xi d,dfcb : destinatiédn
$12d cd8z@l call make : create the file
0136 119681 ©o1xi d,nodir : ready message
2133 3¢ ing a ; 255 becomes ¢
_— D134 ceo6lBl cz finis ; done if no dir space

source file open, dest file open
copy until end of file on source

(Y ™ ~e e we

@137 115c00

opy: 1xi d,sfch ; source
$13a ¢cd7801 call read : read neXt record
134 b7 ora a ; end of file?
81l3e c25101 jnz - eofile ; skip write if so

’

: not end of file, write the record
#141 114ap1 1xi d,afcb ; destination
$1l44 cd7asl call write ; write record
8147 112961 1xi d,space ; ready message
Pld4a b? ora a ; B0 if write ok
914b c46181 cnz finis ; end if so
Bl4e c33701 Jmp copy ; loop until eof

s

eofile: ; end of file, close destination
#1511 11dagl 1xi d,dfcb ; destination
9154 cdbedl call close : 255 if error
£157 21bbol 1xi h,wrprot; ready message
615a 3c inr a ; 255 becomes 08
B15b cc6l0l cz finis ; shouldn’'t happen

3 copy operation complete, end

(311 Information Contained Herein is Proprietary to Digital Research,)

31

354

355

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 39 of 57

A15e llccgl 1xi d,normal; ready message
finis: ; write message given by de, reboot

2161 Bed9 mvi c,printf o

$163 cdps60 call bdos ; write message

B166 c30080 jmp boot ; reboot system

system interface subroutines
(all return directly from bdos)

O ~e v e me

3169 Pedf pen: mvi c,opent
pl6b c38500 Jinp bdos
Blée Peld close: myi c,closef
0170 c365060 jmp: bdos:
8173 Pelld deleter mvi ¢,deletef
B175 c30508 jmp bdos
p1l78 Pelds read: mvi c,ceadf
Bl7a c30500 Jmp bdos
8174 Beld @:ite; mvi c,writef
B17f c3p508 Jmp bdos
#1182 felb ﬁake: mvi c,makef
2184 c38500 jmp bdes
5 console nmessages
B187 Ge6tf2pfnofile: db ‘no source file$'
3196 6e6£2@09nodir: @b 'ne directory sPace§'
@la9 6££7574fspace: @b ‘out of data space$
@1bb 77726%5wrprot: db . ‘'write protected?y’
glcc 636£76%normal: db ‘copy complete$’
; data areas
@1da dfcbe ds =~ 33 ; destination fcb
?Yifa = dfcbcr egu - dfcbh+32 ; c¢urrent trecord
] o '
P1lfb ds 32 ;+ 16 level stack
stack:
821b end

Note that there are several simplifications in this particular
program. First, there are no checks for invalid file names which
could, for example, contain ambiguous references, This situation
could be detected by scanning the 32 byte default area starting at
location 885CH for ASCII question marks, A check should also be made
te ensure that ¢the file names have, in fact, been included {(check
locations @B5DH and B@6DH for non-blank ASCII characters). Finally, a
check should be made to ensure that the source and destination Tfile
names are different. A speed improvement could be made by buffering
more data on each read operation. One could, for example, determine

(All Information Contained Herein is Proprietary to Digital Research.)

32

356

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 40 of 57

the size of memory by fetching FBASE from lecation f806H and use the
entire remaining portion of memory for a data buffer. In this case,
the programmer simply resets the DMA address to the next successive
128 byte area before each read, Upcn writing to the destination file,

the DMA address is reset to the beginning of the buffer and

incremented by 128 bytes to the end as each record is transferred to
the destination file.

(A1l Information Contained Herein is Proprietary to Digital Research.)

33

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 41 of 57

4, A SAMPLE FILE DUMP UTILITY,

The file dump program shown below is slightly more complex than
the simple copy program diven in the previous section. The dump
program reads an input file, specified in the CCP commarnd line, and
displays the content of each record in hexadecimal format at the
console, Note that the dump program saves the CCP's stack upon entry,
resets the stack to a lecal area, and reéstores the CCP's stack before
returning directly to the CCP. Thus, the dump program does nok
perform and warm start at the end of processing,

DUMP program reads input file and displays hex data

-~ W

9108 org 186h
pags = bdos egu 7905h ;dos entry point
881 = cons egu 1 jréad console
poB2 = typef egu 2 stype function
e89 = printf egqu 9 ;buffer print entry
gogb = brk £ equ 11 jbreak key function (true if char
g0BL = openf egqu 15 ;file open
9014 = readf egu 20 jread function
g85¢c = fch egqu 5ch i1file control block address
p080 = buff equ 8oh. ;jinput disk buffer address
_ . ; non graphic characters
2¢84 = cr &gu 8dh ;carriage return
pega = 1f equ Bah ;line feed
f
; file control block definitions
a— B05c = fcbdn egu fchb+d ;disk name
i égs5d = fcbfn. egu fcb+l ;file name
: 6665 = fcbhft equ fch+9 ;disk file type {3 characters)
pge68 = febril equ fcb+l2 ;file’s current reel number
go6b = febre eqgu fcb+1l5 ;file's record count (B8 to 128)
B87c = fcber egu fcb+3Z jeourrent (next) record number (B
pg7d = fcbln eqgu . £fcb+33 ;fcb length
; set up stack
8100 210600 Ixi’ h,?
9103 39 dad sp
H entry stack pointer in hl from the ccp
8104 221562 shld oldsp
: set sp to local stack area (restored at finis)
#1867 315742 1xi sp,stktop
; read and print successive buffers
219a cdcldgl call setup ;set- up input file
010d feff cpi 255 ;255 if file not present
010f c21bBl jnz openok ;skip if open is ok
; file not there, give error message and return
8112 11£341 1xi d,opnmsg
BlLl5 cd9chl call err
9118 ¢35101 jmp finis ;to return

(All Information Contained Herein is Proprietary to Digital Research.)

34

357

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 42 of 57

openok: ;open operation ok, set buffer index to end

@6llb 3esp nvi a,808h
Plld 321382 sta ibp :set buffer pointer to 806h
: hl contains next address to print
8120 218080 1xi h,o istart with 5900
H
gloop:
#123 e5 ' push h :save line position
0124 cdaz28l call gnb
0127 el pop h. sxecall line position
0128 da518l je finis icarry set by gnb if end file
g12b 47 mov b,a
: print hex values
I H check for line fold
212c 74 mov a,1 . _
9124 ebldf ani 9fh scheck low 4 bits
g12f c24401 jnz nenum
s print line number
#1332 cd728] call crlf
o : check for break key
B$135 cd5981 call break '
o : accum lsb = 1 if charactér ready
0138 Gf - ree sinto carry
139 da5161 jec finis ;don‘t print any more
P13c 7c ' mov a,h
$13d cdaBfal call phex
9149 74 mov- a,l
L 6141 cdsfol call phex
--34 nonums .
! 0144 23 ink h 1to next line number
#3145 3e20 mvi a,*?
0147 cde5081 call pchar
Blda 78 ‘mav a,b
@14b cdBffl call phex
Plde <32301 jmp ., gloop
finis: -
: end of dump, return to ccp
_ 7 (note that a jmp to 8800h reboots)
@151 cd7281 call crlf
B154 2al5092 Thld oldsp
@157 £9 sphl _ v
i stack pointer contains ccp's stack location
B158 c9 ret sto the ccp
: subroutines
break: :check break key (actually any key will do)
9159 e545¢5 push h! push 4! push b; enviromment saved
B1S5c 0eBh mvi c,brkf
@15e cddased call bdos
Blé6l cldlel pop b! pop &! pop h; enviromment restored

(811 Informatien Contained Herein is Proprietary to Digital Research.)

35

358

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 43 of 57

164 c9 ret
échar: ;print a character
#165 e5ds5cH push h! push @! push b; saved
9168 Bed2 mvi c,typef
#16a S5f mov e,a
@16b cdps68 call bdos
glée cldlel pop b! pop d! pop h; restored
8171 ¢35 ret
érlf:
9172 3eBd myi a,cr
D174 cd6581 call pchar
8177 3efa mvi a,lf
8179 cd6s56l call pchar
#l7c c9 ret

priib: iprint nibble in reg a

P17d e6@f ani G6fh s7low 4 bits
B17f feda cpi 1@

#181 4289p1 . Jne plé _ .

) 1 less than or egual to 9
#184 c63e ’ adi ‘g’

0186 c38bol Fmp prn

greater or egual to 14

1
9189 c637 ple: adi 'a' - 19
$18b cd658l1 prn: call pchar
BlBe co ret
by {
b-} phex: ;print hex char in reg a
' 018f £5 push psw
0198 Of IEC
@191l Bf rrc
9192 Bf rec
P193 Bf rec
6194 cd7ggl call ™ pnib ;print nibble
8197 f1 pop psw
9198 cd7d9l call pnib
819b c9 ret
err: ;print error message
: d,e addresses message ending with "$*
P19c pef9 mvi c,printf ;print buffer function
#19%e cdps509 call bdos
Blal c¢¢ ret
1
gnb: ;get next byte
0la2 3al3@2 1da ibp
6la5 feB0 cpi 88h
Bla7 c2b3ol inz g8

read another buffer

(All Information Contained Herein is Proprietary to Digital Research.)

36

359

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 44 of 57

¥
r

flaa cdcefl call diskr
Blad b7 ora a +zero value if read ok
@lae cablgl jz g8 3 for another byte
‘ : end of data, return with carry set for eof
plbl 37 stc
#1b2 ¢9 ret
r
_ g ;read the byte at bufffreg a '
pib3 5f mov e,a ;1s byte of buffer index
B1b4 16049 nvi 4,98 ;jdouble precision index to gde
p1bé 3c inxg a ; index=index+l
B1b7 321362 sta ibp tback to memory
3 pointer is incremented
H save the current file address
flba 218008 1xi h,buff ‘
01bd 19 dad d _
: -absolute character address is in hl
Blbe e mov a,m .
‘ ; byte is in the accumilator
81bE b7 ora a ireset carry bit
Blcd c9 . ret
setup: jset up file
; open the file for input
Plcl af xra a :zero to accum
Blc2 327chd@ sta febher :clear current record
@lc5 115c08 1xi d,fchb
lc8 Qebf mvi c,opent
d——, @lca cdus5e8 call bdos.
} ; 255 in accum if open error
’ @1lcd c9 ret
_ diskr: 3jread disk file record
Plce e5d5¢c5 push h! push d! push b
3141 115co¢0 1xi d,fcb
g1d4 Geld mvi " ¢c,readf
2146 cdgs5p8 call bdos
8149 cldlel pop bl pop d! pop h
Bldc c9 ret
f
H fixed message area
#1dd 46494cPsignon: db 'file dump version 2,.8§$'
B1£3 pddadelopnmsg: db cr,1f,'no input file present on diskS*
t variable area
6213 ibp: ds 2 ;input buffer pointer
8215 oldsp: ds 2 ;entry sp valug from ccp
3 stack area
217 ds 64 ijreserve 32 level stack
stktop:
!
8257 end

(All Information Contained Herein is Proprietary to Digital Research,)

37

360

361

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 45 of 57

5. A SAMPLE RANDOM ACCESS PROGRAM.

This manual is concluded with a rather extensive, but complete
example of random access operation., ‘The program listed below performs
the simple function of reading or writing random records upon command
from the terminal., Given that the program has been <created,
assembled, and placed into a file labelled RANDGHM.COM, the CCP level
command;

RANDOM X.DAT

starts the test program. The program looks for a file by +the name
X.DAT (in this particular case) and, if found, proceeds to prompt the
console for input., If not found, the file 1s created before the
prompt is given. Each prompt takes the form

next command?

and is followed by operator input, fterminated by a carriage return.
The input commands take the form

n¥ nR @

where n is an integer value in the range. @ to 65535, and W, R, and Q
are simple command characters corresponding to random write, random
tead, and guit processing, respectively. If the W command is issued,
the RANDOM program issues the prompt

type datas

The operator then responds by typing up to 127 eéharacters, followed by
a carriage return, RANDOM then writes the character string into the
X.DAT file at record n. If the R command is issued; RANDOM reads
tecord number n and displays the string value at the console., If the
Q command is issued, the X.DAT file is closed, and the program returns
to the wconsele command processcr. In the interest of brevity, the
only error message is

e

error, try again

The program begins with am initialization section where the
input file is opened or created, followed by a continuous ioop at the
label "ready" where the individual commands are interpreted, The
default file control block at BBSCH and the default buffer at 6088H
are used in all disk operations, The utility subroutines then follow,
which contain the principal input 1line processor, called “readc. ™
This particular program shows the elements of randoni access

processing, and can be used as the basis for further program
development,

{All Information Contained Herein is Proprietary to Digital Research.)

38

362

ploe

6ouD
60495

6001
0082
$089
9@ 8a
pgBc
popE
0010,
#0816
0521
BB22

805c
pe7d
07f
20848

Bued
poga

p1o0

8183
$la5
6108
91l8a

gled
GL10
6113

g1ll6
2118
911b
Blle
p11f

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 46 of 57

nnowu oy

i

31bch

Befc
cdnsa
feld
d2l6@

11160
cdda@
c3860

Dedf
115¢H
cdds5e
3c
c237¢

;***********i*ﬁ*k****************K********t****k#***

% %
;-
;% sample random access program for cp/m 2.8 *
-~ *
;*X*************ﬁt***************j********t****t****
org 1608h ;base of tpa
: .
reboot equ p888h ;8ystem reboot
bdos egu #005h ;bdos entry point
éoninp egu 1 ;jconsole input function
conout equ 2 ;jconsole output function
pstring egu 9 ;print string until "$°
rstring equ 10 :read console buffer
version egu 12 sreturn version number
openf equ 15 ;f£ile open function
closef egu 16 ;close function
nakef egu 22 :make file function
readr equ 33 ;read random
writer eéequ 34 ;write random
£cb. egu #65ch ;default file control block
ranrec edqu fcb+33 ;random record position
ranovi equ fecb+35 ;high order (overflow) byte
buff egu 0688h ;buffer address
;
cr equ bdh ;carriage return
1£ eqgu f§ah s1line feed
;**********kkk**********************j************}*t
e ¥ *
’ .
;* load SP, set-up file for random access *
ok ’ *
;*********************tt***ﬁ************************
1xi sp,stack
: version 2,872
mvi “‘c,version
call. bdos ‘
cpi ~ 26h ;jversion 2.8 or better?
jnc versok
: bad version, message and go back
1xi d,badver
call print
jmp reboot
versok:
: correct version for random access
mvi c,openf jopen default Eeb
Ixi d,fchb
call bdos
inr a ;err 255 becomes zeroc
jnz ready
:
: cannot open file, so create it

(All Information Contained Herein is Proprietary to Digital Research.)

39

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 47 of 57

2122 Gels nvi c,makef
9124 115cH 1xi d,fch
9127 caBs0 call bdos _
@i2a 3c inr a ;err 255 becomes zero
812b ¢2379 jnz ready
; cannot create fileé, directory full
212 113a0@ 1xi d,nospace
g131 cddag call print
9134 c3¢9086 jmp reboot :back to ccp
;************i*x******************#i********&*******
* *
* loop back to "ready" after each command *
* *

A KK AARIRRF AR F Rk Ak ok Ak ok dod ok dode Kk dododkdode ks dodkok ok & ko Jok KOk ok k

S me Pt e wa Ve e e

eady: .
file is ready for processing
g137 cdes5d call teadcom iread next command
0l3a 227406 shld ranrec jstore input record#
p13d 217£9 151 h, ranovf _
p140 3600 mvi m,d sclear high byte if set
9142 fe51 cpi ‘Q* jquit?
P1l44 c25690 nz notyg
4
s quit processing, close file
8147 gel@ mvi c,closef
. $149 115c@ 1xi 8,fchb
‘-j #14c cdgsd call bdos
) P14t 3c inr a sexx 255 bécomes @
B158 cab%g iz error ;error message, retry
p153 c3poa jmp reboot ;back to ccp
;**********Y*k**k***t***j*##*K*%***#***w***#********
'S4 *
+* end of quit’ command, process write *
+* * *
;***j***************ﬁ*********t***********t*********
notqgs:
: not the guit command, random write?
8156 feb7 cpi A
0158 c28980 jnz notw
3 this is a random write, fill buffer until ct
@15b 11449 1xi d,datmsg
B15¢ cddad call print ;data prompt
Blel fe7f nvi 2,127 ;up to 127 characters
163 21800 1xi h,buff ;destination
rloop: ;read next character to buff
gl66 c5 push b ;1 save counter
B167 e5 push h ;next destination
P168 cdc2@ call getchr j;character to a
Bleb el pop h ;restere countetr

{All Information Contained Herein is Proprietary to Digital Research.)

49

363

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 48 of 57

Bléc ¢l pop b srestore next to £ill

Pled fefd cpl cr :end of line?

glef cai8s jz erloop
; not end, store character

g172 77 mov m,a

8173 23 inx h :hext to fill

#174 4d der c ;counter goes down

8175 c2668 jnz rloop ;end of bhuffer?
erloop:
. end of read loop, store 0@

8178 3680 mvi m,0
; writé the record to selected record number

B17a Be22 mvi ¢c,writer

B1i7c 115¢8 Ixi d.fcbh

BI7f cdgsg call bdos

8182 b7 ora a ;error coede zero?

183 <c2b9s jnz error :message if not

9186 ¢3378@ jmp ready ifor another record
;.*'*******k****-*'};ﬁ;‘:;‘:#*-*] **#*.‘:**.‘.‘-**-*-;\-*-‘k*#%*'***1:-’*.*#****#
. *
'4 .
:* end of writé command, process read *®
PR *
:.*******-*l\'*--‘o\'******#*k*?****;***i‘**#*****-*******:**-‘***ft
notws -

_ > not a write command, read record?
189 fes2 cpi ‘R’
#18b c2b9@ jnz error 1skip if not
- _ ' read random tecord
] BlB8e Be2l mvi c,readr

190 115cH o 1xi d,fch

0193 capseg call bdos

2196 b7 ora a ;return code 86?

P197 c2b9o jnz error
; read was successful, write to console

819%a cdcfd call crlf ;hew line

B19d @GeBo mvi c,128 ;max 128 characters

#19f 21809 1xi h,buff ;next to get
wloop:

#la2 Je mov a,m ;next character

@la3 23 inx h snext to gekt

9lad e67f ani 7fh imask parity

@lab6 cal78 jz ready :for another command if 89

gla® c5 push b ;save counter

glaa eb push h ;save next to get

8lab fe29 cpi v ;graphic?

Blad d4chd cnc putchr ;skip output if not

Flhd el pop h

g1bl cl pop b

21b2 @d dcr c ;count=count~1

g1b3 c2az2¢ jnz wloop

81b6 <3370 jmp ready

(ALl Information Contained Herein is Proprietary to Digital Research.)

41

364

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 49 of 57

<a =

akkhERKKRIAARI AR Ak kR AT KRk KRR Nk hkhkhkkhhhhkikkkk
% *
3% end of read command, all errors end-up here :
. .
;*'*-****:k***i‘k***'*'*'**.k*****"*************‘***'****’*******
H
error:
@g1b9 11590 1xi d,errmsg
#ibc cddad - call print
@ibf c3378 jmp ready
;***k****.t*****-**:‘kﬁk**k******t-fk'********'** EhkNERFERAKR
oW %
r T . - . . . F
3* utility subroutines for console i/fo *
ok *
;*****t********t***i****k**#***k******ti**********i*
getchr: _
;read next console character to a
21c2 BeBl mvi c;,coninp
f1lcq cdph9g call bdos
9lc7 c9 ret
H)
putchlir: _
;write character from a to console
9.1c8 fed2 mvi c.conout
Blca 5¢ mov e,a ;jcharacter to send
Blcb cd@se - call bdos ;send character
Glce ¢9 ret
i
- crif: .
) sseéend carriage return line feed
. #1cf 3egqd mvi a,cr icarriage return
914l cdc§?p call putchr _ _
91d4 3eBa mvi a,1lf :line feed
. 81386 cdc8g call putchr
6149 c9 ret
;
print: . ’
iprint the buffer addressed by de until §
glda ds push d
@81db cdcfd call crlf
Plde di pop a :new line
B13f Ped?9 mvi c,pstring
Plel cdgsg call bdos sprint the string
gled c9 ret
readcoms:
_ . ;iread the next command line to the conbuf
gle5 116b9 Ixi d,prompt
gle8 cdda® call print ;command?
fleb fefa mvi c,rstring
#led 1l17a@ 1xi d,conbyf
@1E0 cagso call bdos ;read command line
; command line is present, scan it

(All Information Contained Herein is Proprietary to Digital Research.)

42

365

366

Case 2:05-cv-01719-TSZ

Document 14-9 Filed 03/15/07 Page 50 of 57

g1£f3 21800 1xi h,o ;start with 009889
@Blfe 117ch 1xi d,conlin;command line
£1f9 la readc: ldax a ;next command character
glfa 13 inx 4 ;to next command position
g1fb b7 pra a ;jcannot; be end of command
2lfc c8 rz
, ; not zero, nhumeric?
¢1fd d63o sui 9’
P1EEf fefa cpi 18 ycarry if numeric
82681 32130 9nec endrd
: add~in next digit
p2g4 29 dad h %2
B265 4d mov c,.l
9296 44 mov b, h b = value * 2
@207 29 dad h 1 %4
8288 29 dad h Pk
0289 89 dad b ;%2 + *8 = ¥10
820%a 85 adad 1 j+digit
B20b &f - mov 1,a i
p28c A2£99 inc readc :for another char
920 24 inrc h ;overflow
#2106 c3£99 jmp readc ;for another char
endrds .
_ H end of read, restore value in &
9213 c630 adi ‘g ; command
P215 £febl cpi ‘al rtranslate case?
$.217 48 re
H lower case, mask lower case bits
9218 e65f ani 16151111b
f2la c9 ret

~e we s

REKKRKARR I RKRKR KK RARARRARRA RN A RRRNRIRARR SRR AA KX A AR &%
*.

x

;% string data area for console messages *
'R] *
;*********************x**x*x********nt#*i***********
) badver: ot

921b 536£79 ' db “ *sorry, you need cp/m version 2§’

o ‘hospace:

£23a 4e6f29 db no directory space$’
datmsg:

V244 547979 dab ‘type data: $°'
errmsg:

3259 457272 db ‘error, try again,$®
prompt: .

B26b 4e6578 db 'next command? $°'

’

(A1l Information Contained Herein is Proprietary to Digital Research,)

43

367

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 51 of 57

JREARKKKK KK KIKK KKK KRR FHRA NN NdIHd o dodkek kkdarhdohdoddkbdw ok

. % L
f* fixed and variable data area *
.* *
H AXKAARNRNARNN AR KA R R A Adhdhdhk **'k************************
p27a 21 conbuff db conlen ;length of cohsole buffer
p27b consiz: ds 1 ,resultlng size after read
g27c conlin: ds 32 ;length 32 buffer
gaz21 = conlen equ §-consiz
B#29¢ " ds 32 716 level stack
stack:
a2bc end

_Again, major improvements could be made £0 this particular

program to enhance its operation, In fact, with some work, this
program could evolve into a simple ddta base management system, One

could, for example, assume a standard record size of 128 bytes,
consisting of arbitrary fields within the record. A program, called
GETKEY, could be developed which first reads a seéguential file and,
extracts a specific field defined by the operator. For example, the
command

GETEEY NAMES.DAT LASTNAME 18 28

would cause GETKEY to read the data base file NAMES.DAT and extract
the “LASTNAME" field from each record, starting at poesition 18 and
ending at character 26. GETKEY builds a table in memory consisting of
each particiYar LASTNAME field, along with its 1l6-bit record wunumber
location within the file, The GETKEY program thenh sorts this list,
and writes a new file, called LASTNAME,KEY, which is an alphabetical

list of LASTNAME fields with their correspondlng record numbers,
(This list is called an “inverted index" in information retrieval

parlance.)

Rename the program éhown above as QUERY, and massage it a bit so
that it reads a sorted 'key file into memory. The command 1line might
appear as: '

QUERY NAMES.DAT LASTNAME,KEY

Instead of reading a number, the QUERY program reads an alphanumeric
string which 1is a particular key to find in the NAMES.DAT data base.
8ince the LASTNAME,KEY list is sorted, you can find a particular entry
quite rapidly by performing a "binary search," similar to locking up a
name in the telephone book. That is, starting at both ends of the
list, you examine the entry halfway in between and, if not matched,
spllt either the upper half or the lower half for the next search,
You'll qu1ckly reach the item you're looking for (in log2(n) steps)
where you'll find the corresponding record number, Fetch and display

this record at the console, just as we have done in the program shown
above,

{All Information Contained Herein is Proprietary to Digital Research.)

44

368

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 52 of 57

At this point you're just getting started, With a 1little more
work, vou can gllow a fixed grouping size which differs from the 128

byte record shown above, This is accomplished by keeping track of the

record number as well as the byte offset within the record. Knowing
the dgroup size, you randomly access the record containing the proper
graoup, offset to the beginning of the group within the record read
seguentially until the group size has been exhausted,

Finally, you can improve QUERY considerably by allowing boolean
expressions which compute the set of records which satisfy several
relationships, such as a LASTNAME between HARDY and LAUREL, and an AGE
less than 45. Dlspiay all the records which fit this descrlptlon.
Finally, if your 1lists are getting too big to fit into memory,
tandomly access your key files from the disk as well, one note of
consolatlon after all this work: 1if you make it through the project,
you'll have no more need for this manual!

(All Information Contained Herein is Proprietary to Digital Research.)

45

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 53 of 57

6., SYSTEM FUNCTION SUMMARY.

FUNC FUNCTION NAME INPUT PARAMETERS OUTPUT RESULTS

et w ee e e St e e e e S e s P o o D S s s e Gk e PP B SR et S 9 e gt U U B s oy S —— - ——— -

a System Reset none none

1 Console Input none A = char

2 Console Cutput E = char none

3 Reader. Input none A = char

4 Punch Output E = char none

5 List Output E = char none

6 Direct Console I/0 see def see def

7 Get I/0 Byte none. A = IOBYTE

8 . Set I/0 Byte E = IOBYTE none

9 Print String DE = ,Buffer none

i¢ Read Console Buffer DE = ,Buffer see def

11 Get Console Status none A = B@/FF

12 Retlurn Version Number none HL= Version*
i3 Reset Disk System none see def
1l4 Select Disk E = Disk Numbér <see def

15 ©Open File DE = .FCB A = Dir Code
16 Close File DE = ,FCB A = Dir Code
17 Search for First DE = .FCB A = Dir Code
18 Search for Next none A = Dir Code
19 Delete File ‘ DE = ,FCB A = Dir Code
20 Read Seguential DE = ,FCB A = Brr Code
21 Write Bequeptial DE = [FCB A = Err Code
22 Make File DE = .FCB A = Dir Code
) 23 Rename File DE = .FCB A = Dir Code
— 24 Return Legin Vector none HL= Login Vect*
! 25 Return Current Disk none A = Cur Disk#

26 Set DMA Address DE = _DMA none '
27 Get Addr(alloc) none HL= .Alloc
28 Wtite Protect Disk none see def

29 Get R/O0 Vector none HI= R/O Vect*
3¢ Set File Attributes ., DE = ,FCB see def

31 Get Addr(disk pamms) : none HL= ,DPB

32 Set/Get User Code- see def see def
33 Read Random DE = ,FCB A = Brr Code
34 Write Random DE = ,FCB A = Err Code
35 Compute File Size DE = _FCB rd, £l, 2
36 Set Random Record DE = ,FCB 9, rl, r2

369

* Note that A = L, and B =

(A1l Information Contained Herein is Proprietary to Digital Research,)

H wpon return

46

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 54 of 57

7. ADDENDUM

NEW CP/M 2.2
BDDS FUNCTIONS

Jedveede e devedove e Te e e e e ke e el el e e e

¥ FUNCTION 37: KESET DRIVE ¥
Ry e g B S Ty e e e L R R R o
“ Entry Parameters: - *
¥ Register C: 25H %
e Register DE: Drivé Vector *
* W
* Returned Value *
* Register A: DPH *

dededeiokdedeedidede e dedenedeiledo e delalfoiriedelolededalclede

. The RESET DRIVE function allows resetting of specified
drive(s). The passed parameter is a 16 bit vector of drives
to be reset, the least significant bit is drive Aw.

In order to maintain cowpatibility with MP/M, CP/M
- returns a zero value,

Sedededededot vtk 7‘:-.':7;:;2'. Jedededede e dovedede ek de
% T'UNCTION 4f: 'WRITE RANDOM WITH¥*
w ZERO FILL w

[JSPCP L I R WS ORAUR, ST DA JN, O SO R JOCSOOC JC/Qr O SO Y S0 DU YO YUV SO O T D
T R R i e e e T L A e T S e T R S

* Butry Parameters: w
* Register C: 28H
* Register DE: FCB Address *
* Returned Value: -«
v Register A: Return Code *

oo S e e e it de e el dede de e e de e de e e e e

ale
W

E

_The- WRITE RANDOM WITH ZERO FILL operation is similar
to FUNCTION 34: with the exception that a previously
unallocated block is filled with zeros before the data
is written.

47

370

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 55 of 57

371

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 56 of 57

372

Case 2:05-cv-01719-TSZ Document 14-9 Filed 03/15/07 Page 57 of 57

373

